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Abstract. This paper shows the use of the Lattice Boltzmann Method for the simulation of the
diffusion equation  in  heterogeneous media.  The theoretical  background of  the  method for  both
homogeneous and heterogeneous media is developed. A simple method of determination of  the
conditions of safe use of the LBM is proposed, accompanied by a practical example. The range of
interest and condition of non-negativity of the equilibrium distributions are determined for a broad
range of diffusive properties ratios. 

Introduction

The Lattice Boltzmann Method (named LBM) is an explicit numerical method enabling in some
cases, the large parallelisation of computationally intensive problems on graphical processing units.
This method allows for the real-time determination of velocity, species or temperature distributions
in porous media [1]. The attractiveness of the method lies in its relatively simple implementation
and its  fixed,  regular  grid,  whatever  be  the geometry of  interest.  However,  special  attention is
required  regarding  the  stability  of  the  method  when  heterogeneous  media  are  considered  with
increasing relative thermal conductivity.

The Lattice Boltzmann Method for Diffusion

The LBM is a mesoscopic approach of the partial derivative equations problems. The evolution
of a fluid or a solid is deducted from the consideration of a population of particles interacting with
well-defined  rules  of  collision.  Unlike  the  well-known  Navier-Stokes  approach  that  uses  the
equations  describing  the  macroscopic  behaviour  of  a  fluid  and  then  discretizes  them  to  the
microscopic level, the LBM is an “ascendant” method, where the particles' agitation defined by the
Maxwell-Boltzmann  distribution  of  statistical  mechanics  allows  for  a  consistent  extrapolation
towards the macroscopic behaviour.  The link between micro and macroscopic scales is reached
thanks to a Chapman-Enskog expansion [2].

Practically, the LBM consists in considering a population
of  particles  streaming  along  given  directions  in  the  space
systematically  on the  points  of  the  grid.  The  particles'
displacement is equal to unity in every direction, hence the
time and space scales are strongly linked. At each time step,
the particles' distributions stream orthogonally and diagonally
to  their  neighboring  nodes  and  exchange  their  energy  by
collision. Fig. 1 gives an example of distribution propagation
for  the   model,  where  subscript  “2”  represents  the
dimension of  space,  “9” being the number of distributions
streaming on the grid (8 possible space directions, plus the
probability of staying on the same point).

Figure 1: D2Q9 Scheme - Arrows
representing the possible

directions of propagation of the
distributions



Boltzmann's equation ruling the particles' behaviour is given under following form,  begin the
density of probability of the particles,  the speed of propagation and  the collision operator:

. (1)

After discretizing the space into  as previously defined, with  and  “lattice
unit per time step in direction ” as the mesoscopic speed of the particle on the grid, one obtains:

. (2)

In  the  Bhatnagar-Gross-Krook  approach  [3],  the  collision  operator  is  approximated  as  a
relaxation of the distribution function towards the equilibrium distribution:

. (3)

The equilibrium distribution function  of Eq. 3 is computed through the Taylor expansion of
the Maxwell-Boltzmann distribution of a stationary perfect gas at the equilibrium, which simplifies
for the diffusion process merely as Eq. 4:

. (4)

The   factor  in Eq. 4 is  simply the sum of the   distributions at  the point considered and
represents the computed macroscopic,  e. g. the concentration or temperature. The   factor is a
constant weighting relative to the propagation direction, such as . Long displacements
are less likely than short ones, hence the decreasing weightings of zero displacement, orthogonal
displacement and diagonal displacement.

Setting out  and writing the Boltzmann equation with its discrete form, one obtains the
explicit equation of the space-time evolution of the  functions:

. (5)

For stability reasons of the LBM, the  factor has to remain strictly between 0 and 2. In the case
the case of two-dimensional diffusion in a single given medium, the relationship between  and the
“LBM diffusivity”  is as follows:

. (6)

In Eq. 6,  is a parameter called the sound speed in the LBM space-time, but is actually
only a scaling factor in the case of diffusion [3, 4].

In order to make a LBM simulation with a given number of time steps  and a mesh size 
with the evolution  of a real domain , one has to make their Fourier numbers correspond: 

. (7)

Changing the “LBM diffusivity” or refining the mesh will hence affect the number of time steps
to be computed. For more details about the LBM and its boundary conditions, please refer to [2].



Regarding the simulation of diffusion in two materials   and , the best practice is to define a
relaxation factor for one of them and then determine the value of the other one depending on the
ratio of real diffusivities, as developed hereinafter:

. (8)

. (9)

. (10)

. (11)

The  major  interest  of  the  LBM  is  its  simple  numerical  implementation  even  for  complex
morphologies, the controlled change of the relaxation factor   depending on the type of media
considered on the regular grid allowing for a correct representation of the physics, without having to
change the mesh at the interface.

As we have seen, two parameters  and  have to be controlled in order ensure a consistent
result, which will be detailed in following section.

Numerical Stability, Non-negativity and range of use for heterogeneous media

Another aspect of this  study is the behaviour of the LBM-BGK algorithm depending on the
variation of the relaxation factor , which affects the precision, computational cost and stability of
the method.

As mentioned in the previous section, the
relaxation  factor  depends  on  the  LBM-
diffusivity  for  a  chosen  problem.  It  also
affects  the  computational  cost,  i.  e.  the
number  of  iterations  required  to  reach  a
given  real  time  and  the  precision  of  the
method  [5].  Taking  the  explicit  Finite
Differences  Method  (FDM)  as  a  reference
for  comparison,  one  can  see  on  Fig.  2  the
evolution  of  the  error  ratio  between  LBM
and FDM, as well as the time steps ratio. The
horizontal  dotted  line  is  the unity ratio  for
both  methods'  time  steps  and  gives  a
measure of the time steps ratio required for
the  LBM  compared  to  the  explicit FDM.
From  Fig.  2,  one  can  conclude  that  the
relaxation factor shall be small enough to be competitive versus classical methods, ideally below
the unity ratio, yet big enough to allow for a sufficient precision of the method. 

The experience shows that  for heterogeneous media with a  diffusivity ratio reaching several
orders of magnitude, some perturbations might appear at the interfaces between the phases. A first
method  of  control  of  these  instabilities  is  to  ensure  the  non-negativity  of  the  equilibrium
distributions, as well as staying within the range of stability of the numerical scheme.

Non-negativity analysis for the  lattice arrangement and heterogeneous diffusion.

Figure 2: Comparison of the LBM versus the finite-
differences method for the diffusion problem



The  non-negativity  analysis  is  a  simple  way of  checking  that  the  solution  obtained  have  a
physical meaning, i.e. a positive value of probability. It consists in verifying the positivity of the
equilibrium distributions [4], which is very straightforward and leads to following set of equations:

(12)

(13)

(14)

The resulting positivity condition from Eq. 6, Eq. 7 and Eq. 14 is hence:

(15)

Range of use for heterogeneous materials.

Eq.  (8-11)  show  the  relationship
dependency of the relaxation factors with
the diffusivity ratio, as presented on Fig. 3.
On  this  figure,  one  can  read  the
dependency  between  both  relaxation
factors  with  the  diffusivity  ratio  as  a
parameter,  with  diffusivities  presenting  a
difference of several orders of magnitude.
As the considered ratios can be inverted,
the problem obviously shows a symmetry
with respect to the first bisector. The LBM-
BGK simulation of the diffusion process in
heterogeneous  media  hence  requires  a
control  of  the  relaxation  factors  ensuring
the  positivity  of  the  equilibrium
distribution functions for given properties.

Application to a diffusion problem

The theoretical aspects of the method being set, the
validation  of  the  model  will  be  developed  in  next
section,  followed  by  an  application  to  diffusion  in
hydrated cement paste. The apparent diffusivity of the
materials considered was calculated by integration of
the normal flux to the surfaces as in [6].

Validation  of  the  model  with  an  analytical
solution.  Mori & Tanaka's [7] analytical approach of
homogenisation allowed to verify the aptitude of the
code for the apparent diffusivity of the material with
inclusions.  Spherical,  regular  inclusions  were  put  in
the matrix (see Fig. 4) and the apparent diffusivity was

Figure 3: Influence of the diffusivity ratio on the
relaxation factors and non-negativity zone

Figure 4: Isovalues of concentration for
the test case 



computed  for  different  volumic  fractions  of  inclusion   and different  diffusivity  ratios  ,
resulting in a good accordance with Mori & Tanaka's method as presented on Fig. 5.

Diffusion in hydrating cement paste.  In order to
get a realistic description of the fresh cement paste,
we  used  the  level-set  morphology  reconstruction
technique. The resulting morphology is shown on Fig.
6,  for  more  information,  see  the  very  complete
references [8, 9].

The hydrating cement paste is composed of water-
saturated  porosity,  hydrated  cement  and  anhydrous
cement, the latter being considered as impermeable to
diffusion.  The  volumic  fractions  and  respective
diffusivities are summarised in Table. 1

The apparent diffusivity obtained by this method is
, which is coherent with the order

of magnitude of cement paste diffusivity at early ages.

Phase Volumic fraction [%] Diffusivity [m²/s]

Water 12,1

Hydrated cement 68,6

Anhydrous cement 19,3 0

Table 1: Properties of the hydrating cement paste considered

Conclusion

The theoretical background of the LBM for homogeneous and heterogeneous media have been
developed in the frame of this work and a zone of safe usage of the method was proposed for a
broad variety of diffusivity ratios. The LBM code was validated with Mori and Tanaka's analytical
method of calculation of heterogeneous media apparent properties. An application to cementitious
material is proposed.

Figure 5: Benchmark of the code versus
Mori-Tanaka's analytical approach

Figure 6: Morphology - Red:
anhydrous cement, Blue:
water, Green: hydrated

cement

Figure 7: Diffusion into the
reconstructed morphology



References

[1] A. A. Mohamad, Applied Lattice Boltzmann Method for Transport  Phenomena, Momentum,
HeatMass  Transfer,  second ed.,  Dept.  of  Mechanical  and  Manufacturing  Engineering,  Schulich
School of Engineering,University of Calgary, 2007.

[2]  D.A.  Wolf-Gladrow,  Lattice-Gas  Cellular  automata  and  Lattice  Boltzmann  Models  -  An
Introduction, Springer, 2000.

[3] Nourgaliev et al., The lattice Boltzmann equation method : theoretical interpretation, numerics
and implications, International Journal of Multiphase flow 29, 2003.

[4]  B.  Servan-Camas.,F.T.C.  Sai,  Non-negativity  and  stability  analyses  of  Lattice-Boltzmann
Method for advection–diffusion equation, Journal of Computational Physics, September 2008.

[5] E. Walther, C. Desa, R. Bennacer, Stabilité comparative des différences finies et de la méthode
Boltzmann sur gaz réseau vis-à-vis de l’équation d’advection-diffusion, AUGC Conference, May
2013.

[6] A. Pouya, A. Courtois, Définition de la perméabilité équivalente des massifs fracturés par des
méthodes d’homogénéisation », C.R. Earth and Planetary Science, 2002, 975-979.

[7]  T.  Mori,  K.  Tanaka,  Average  stress  in  matrix  and average  elastic  energy of  materials  with
misfiting inclusions, Acta Metallurgica, Volume 21, May 1973.

[8] E. Roubin, Meso-scale FE and morphological modeling of heterogeneous media - Application to
cementitious materials, PhD Thesis, LMT-Cachan, 2013.

[9]  M.  Bogdan,  Morphological  modeling  of  cement  based  materials  and  hydration  process,
Conference proceedings, Microdurability 12 Amsterdam, 2012.


